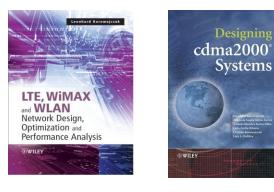
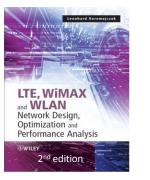
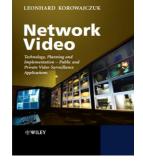
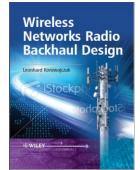


How to consider overhead in LTE dimensioning and what is the impact


Leonhard Korowajczuk CEO/CTO CelPlan International, Inc. <u>www.celplan.com</u> webinar@celplan.com


Presenter




Leonhard Korowajczuk


- CEO/CTO CelPlan International
- 45 years of experience in the telecom field (R&D, manufacturing and services areas)
- Holds13 patents
- Published books
 - "Designing cdma2000 Systems"
 - published by Wiley in 2006- 963 pages, available in hard cover, e-book and Kindle
 - "LTE, WiMAX and WLAN Network Design, Optimization and Performance Analysis"
 - published by Wiley in June 2011- 750 pages, available in hard cover, e-book and Kindle
- Books in Preparation:
 - LTE, WiMAX and WLAN Network Design, Optimization and Performance Analysis
 - second edition (2014) LTE-A and WiMAX 2.1(1,000+ pages)
 - Network Video: Private and Public Safety Applications (2014)
 - Backhaul Network Design (2015)
 - Multi-Technology Networks: from GSM to LTE (2015)
 - Smart Grids Network Design (2016)

5/6/2014

CelPlan International

- Employee owned enterprise with international presence
 - Headquarters in USA
 - 450 plus employees
 - Revenues of US\$ 40M
 - Twenty (20) years in business
- Subsidiaries in 6 countries with worldwide operation
- Vendor Independent
- Network Design Software (CelPlanner Suite/CellDesigner)
- Network Design Services
- Network Optimization Services
- Network Performance
 Evaluation

- Services are provided to equipment vendors, operators and consultants
- High Level Consulting
 - RFP preparation
 - Vendor interface
 - Technical Audit
 - Business Plan Preparation
 - Specialized (Smart Grids, Aeronautical, Windmill, ...)
- Network Managed Services
- 2G, 3G, 4G, 5G Technologies
- Multi-technology / Multi-band Networks
- Backhaul, Small cells, Indoor, HetNet, Wi-Fi offloading

CelPlan Webinar Series

- How to Dimension user Traffic in 4 G networks
 - May 7th 2014
- How to Consider Overhead in LTE Dimensioning and what is the impact
 - June 4th 2014
- How to Take into Account Customer Experience when Designing a Wireless Network
 - July 9th 2014
- LTE Measurements what they mean and how they are used?
 - August 6th2014
- What LTE parameters need to be Dimensioned and Optimized?
 - September 3rd 2014
- Spectrum Analysis for LTE Systems
 - October 1st 2014
- MIMO: What is real, what is Wishful Thinking?
 - November 5th 2014
- Send suggestions and questions to: webinar@celplan.com

Today's Topic

How to consider overhead in LTE dimensioning and what is the impact

Content

- 1. How to Dimension User Traffic in 4G Networks
- 2. How to consider overhead in LTE dimensioning and what is the impact
- 3. LTE Refresher
 - 1. Frame
 - 2. Frame Content
 - 3. Transmission Modes
 - 4. Frame Organization
 - 5. Signals
 - 6. Channels
 - 7. Data Scheduling and Allocation
- 4. Cellular Reuse
- 5. Dimensioning and Planning
- 6. Capacity Calculator
- 7. CelPlan New Products

6

How to Dimension user Traffic in 4 G networks

What was the outcome from the previous webinar

Challenge

More than 200 participants from 44 countries Identify the country codes of participants of the last webinar

1 AE	ARE
2 BD	BGD
3 BG	BGR
4 BI	BDI
5 BR	BRA
6 BW	BWA
7 CA	CAN
8 CG	COG
9 DE	DEU
10 DK	DNK
10 DK	EGY
11 EG	ESP
12 L3	FRA
14 GB	GBR
14 GB	GHA
16 GR	GRC
17 HU	HUN
18 IE	
19 IN	IND
20 IT	ITA
21 JO	JOR
22 KW	KWT

23 LB	LBN
24 MA	MAR
25 MV	MDV
26 NG	NGA
27 NL	NLD
28 NO	NOR
29 OM	OMN
30 PK	РАК
31 PT	PRT
32 QA	QAT
33 SA	SAU
34 SE	SWE
35 SG	SGP
36 SI	SVN
37 TJ	тјк
38 TN	TUN
39 TR	TUR
40 TW	TWN
41 TZ	TZA
42 UA	UKR
43 US	USA
44 ZA	ZAF

8

1. How to Dimension User Traffic in 4G Networks

How to Dimension User Traffic in 4G Networks 1

- Service QoS
 - Services were identified and quality requirements established

Service Identification		– Data R	ate —			Alloc./Retent./Prior Packet Size
			(kbps) AMBR (kbp		(kbps)	ARP (Bytes)
Name	QCI	GBR	MBR	APN	UE	Priority Capabilit Vulnerab DL UI
Conversational Voice	1 🔻	12.5	16			2 Ves Ves 320 32
Conversational Video (live streaming)	2 💌	180	240			2 Ves Ves 760 6
Real Time Gaming	3 💌	1.5	1.6			2 Ves Ves 80 2
Non conversational Video (buffered)	4 💌	128	156			2 Ves Ves 1024 12
IMS signaling	5 💌			64	32	2 Ves Ves 128 3
Video (buffered streaming), TCP applications	6 🔻			128	256	2 Ves Ves 1024 12
Voice, Video Live Streaming, Interactive Gaming	7 💌			128	256	2 Ves Ves 760 6
Video (buffered streaming), TCP applications	8 🔻			128	256	2 Ves Ves 1024 12
Video (buffered streaming), TCP applications	9 🔻			128	256	2 Ves Ves 1024 12
UTP based applications	5 🔻			32	64	2 Ves Ves 64 1
UTP based applications	6 💌			48	128	2 Ves Ves 128 2
UTP based applications	7 -			64	128	2 Ves Ves 256 4

© CelPlan International, Inc.

How to Dimension User Traffic in 4G Networks

- Unitary Tonnage per Service
 - Data speed and tonnage concepts were defined
 - Tonnage per service was estimated

nitary Daily Tonnage —									
- Service Identification			phone —	□ Tablet				⊤ Modem ——	
Name	Unit type	DL	UL	DL	UL	DL	UL	DL	UL
e-mail	kB 💌	2	8	2	8	2	8	2	8
web access	MB 💌	0.1	0.3	0.1	0.3	0.1	0.3	0.1	0.3
music streaming	MB/h 💌	5	55	5	55	5	55	5	55
music download	MB 💌	1	6	1	6	1	6	1	6
video streaming	MB/h 💌	30	320	30	320	30	320	30	320
video calling	MB/h 💌	30	450	30	450	30	450	30	450
photos download/upload	MB 💌	0.5	3	0.5	3	0.5	3	0.5	3
navigation	MB/h 💌	5	25	5	25	5	25	5	25
VoLTE	MB/h 💌	10	10	10	10	10	10	10	10
4G VoIP	MB/h 🔻	15	15	15	15	15	14	15	15
4G VoIP with video	MB/h 🔻	100	100	100	100	100	100	100	100
Online gaming	MB/h 💌	1	4	1	4	1	4	1	4

QoS Class identifier (QoS)

• Default QCI values identified by 3GPP

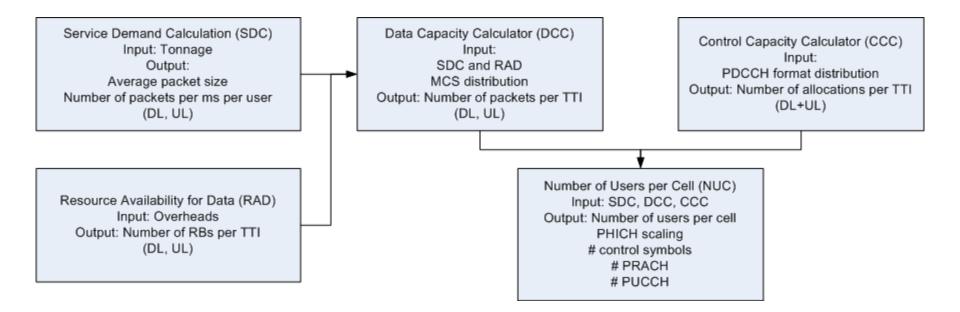
		age QCI Ta]								
QCI Standard Values											
QCI	Туре	Priority	Delay	PER							
1	GBR	2	100	1:10							
2	GBR	4	150	1:1000							
3	GBR	3	50	1:1000							
4	GBR	5	300	1:1000000							
5	NGBR	1	100	1:1000000							
6	NGBR	6	300	1:1000000							
7	NGBR	7	100	1:1000							
8	NGBR	8	300	1:1000000							
9	NGBR	9	300	1:1000000							
	GBR - G	Guarantted Bit I	Rate								
	NGBR -	Non Guarantte	ed Bit Rate								
	Delay -	Packet Delay B	Budaet								
		acket Error Los	-								

How to Dimension User Traffic in 4G Networks

• Service tonnage per terminal type

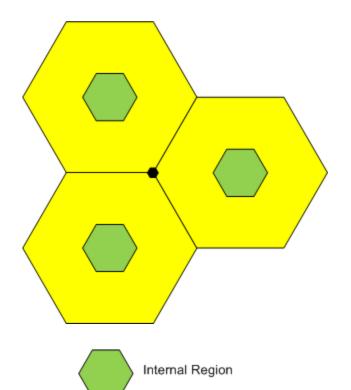
- Total network tonnage per terminal type was estimated

Daily to B	usy Hour Factor	0.33333	Numbe	r of UE	500000	Numbe	r of UE	100000	Numbe	er of UE	80000	Numbe	er of UE	40000
Service Identification ———		Smartphone —		Tablet				Modem ———						
N	Units to one	0-0	Daily Usage	Busy Hou DL	r (Mbps) UL	Daily Usage	Busy Hou DL	r (Mbps) UL	Daily Usage	Busy Hou DL	r (Mbps) UL	Daily Usage	Busy Hou DL	r (Mbp: UL
Name	Unit type	QoS	j _	DL			DL		_	DL				
e-mail	Units 💌	9 🔻	50	0.3034	0.0758	15	0.0910	0.0227	20	25.000	0.0303	25	0.1517	0.037
web access	Pages 💌	9 🔻	20	4.6603	1.5534	40	9.3206	3.1068	50	60.000	3.8836	60	13.981	4.660
music streaming	Minutes 💌	2 💌	4	2.8479	0.2589	6	4.2719	0.3883	8	10.000	0.5178	10	7.1199	0.647
music download	Tracks 💌	7 💌	5	23.301	3.8836	8	37.282	6.2137	10	12.000	7.7672	12	55.924	9.320
video streaming	Minutes 💌	4 🔻	2	8.2850	0.7767	3	12.427	1.1650	4	5.0000	1.5534	5	20.712	1.941
video calling	Minutes 💌	2 🔻	2	11.650	0.7767									
photos download/upload	Units 💌	1 💌	8	18.641	3.1068	10	23.301	3.8836	12	15.000	4.6603	15	34.952	5.825
navigation	Minutes 💌	1 🔻	2	0.6472	0.1294									
VoLTE	Minutes 💌	5 💌				9	1.1650	1.1650	10	15.000	1.2945	15	1.9418	1.941
4G VoIP	Minutes 💌	9 💌				10	1.9418	1.9418	12	12.000	2.3301	12	2.3301	2.330
4G VoIP with video	Minutes 💌	9 🔻				10	12.945	12.945	12	15.000	15.534	15	19.418	19.41
Online gaming	Minutes 💌	3 💌				5	0.2589	0.0647	6	10.000	0.0776	10	0.5178	0.129
Summary	onnage (kbps)			70 337	10.561		103.00	30.897		179.00	37 649		157.04	46.25
	otal Tonnage ((Shns)			5.2808			3.0897		14.320			6.2819	
	Tonnage (GB/M	• •		2.6530				1.1654		6.7516			5.9236	
•	lontly Tonnage	· ·		1.2650			0.3705				0.1083		0.2259	



How to consider overhead in LTE dimensioning and what is the impact

How to consider overhead in LTE dimensioning and what is the impact


- LTE cell capacity is limited by the network configuration and the user traffic characteristics
- The following items should be calculated for different scenarios
 - Service Demand
 - Resource Availability for data
 - Data Transfer Capacity
 - Control (mapping) Capacity
- Cell User Capacity can then be estimated and Pre-programed resources dimensioned

Reuse in LTE

- LTE was conceived for reuse 1
- A cell was divided in an interior (center) and and an exterior (edge) regions
- The exterior region would use very low coding rates (in the order of 0.07)
- The interior region would use higher coding rates
- No criteria was established to define exterior and interior regions
- Broadcast information has to use low coding rates
- Intercell Cell Interference Coordination (ICIC) was considered to improve the performance, four cases were proposed
 - No ICIC
 - Start-Stop Index (SSI)
 - Start Index (SI)
 - Random Start Index (RSI)
 - Start Index Geometry Weight (SIGW)
 - Random Index Geometry Weight (RIGW)

External Region

© CelPlan International, Inc.

16

5/6/2014

Bit scrubbing

- 3GPP decision of implementing a reuse of 1 in LTE implied in:
 - High repetition rates for control information
 - This lead to bit scrubbing (bit shaving) and complexity
 - Blind decoding, implicit addressing , multiple options
 - High data spread rates that trade reuse of 1 for low throughputs
 - Complex transmission modes
 - Some transmission modes can be practically used in few locations in the network (if at all)
- 3GPP provided mechanisms to avoid resource reuse conflicts
 - It suggested that interference is concentrated at cell edge and that reuse of 1 can be done in cell center
 - It did not specify how this should be done
 - Several implementation schemes have been suggested, none full proof
 - Traditional segmentation and zoning still being used

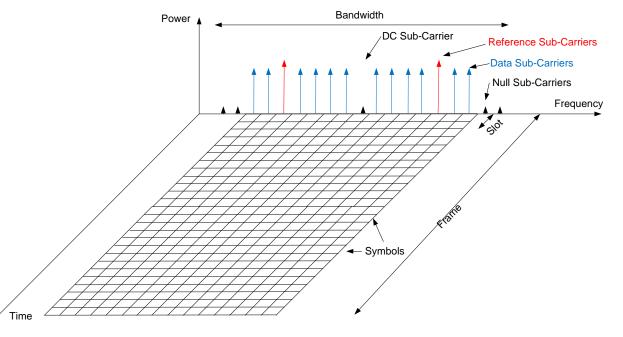
LTE Refresher

Focused on topics related to capacity and overhead

Single FDD Cell

5 MHz channel Normal Cyclic Prefix

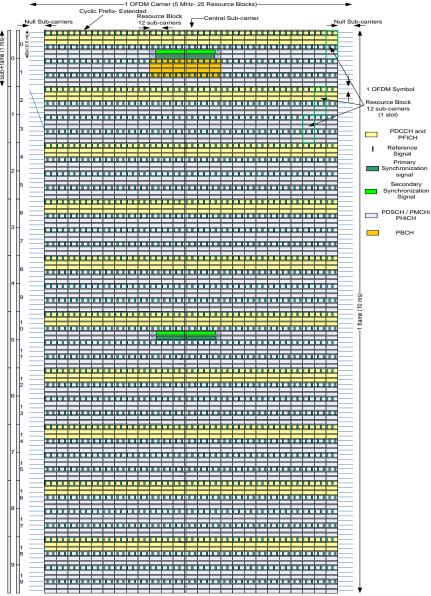
Frame


FDD will be covered in the seminar due to lack of time

LTE Frame

- An RF carrier modulated by a signal with a bandwidth B in the frequency domain, will generate a symbol of duration 1/B in the time domain
- LTE sub-carrier has a 15 kHz bandwidth
- LTE symbol has a duration of 1/15k
 - Ts= 66.66.. μs
- Time Base Unit

 $T_s = 1/(15,000 * 2048) = 32.55 \, ns$

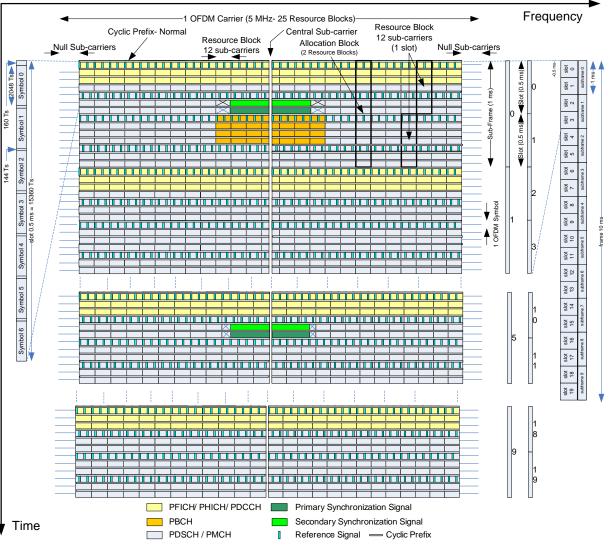

Channel Bandwidth (MHz)	1.4	3	5	10	15	20
Sub-carrier Spacing (kHz)	15	15	15	15	15	15
FFT size	128	256	512	1024	1536	2048
Number of used sub-carriers	72	180	300	600	900	1,200
Number of Sub-carrier groups Resource Blocks (RB)	6	15	25	50	75	100

21

Downlink frame

- Frame Duration:10 ms
- Sub-frames: 10 (1 ms each)
- Slots: 20 (2 per sub-frame)
- Subcarrier: number is bandwidth dependent
- Resource Element (RE): symbol generated by a single subcarrier (15 kHz x 66.66.. μs)
- OFDM symbol: 66.66.. μs across the whole bandwidth
- Resource Block: 12 subcarriers per 1 slot (6 or 7 symbols)
- Resource Element Group (REG): 4 consecutive REs
- Transmit Time Interval (TTI): 1ms (1 subframe)

22


Downlink Frame

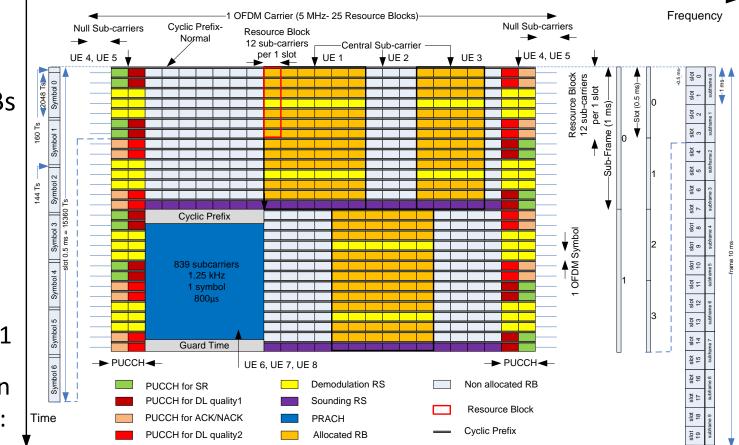
- Cyclic Prefix (CP)
 - addition to symbol duration that eliminates intersymbol interference due to multipath
- A slot can fit:
 - 7 symbols (normal CP)
 - 6 symbols (extended CP)

	Ts	μs	km
Cyclic Prefix= Normal	160/14 4	5.2/4.7	1.4
Cyclic Prefix= Extended	512	16.7	5.0

- TTI OFDM symbols are divided in two blocks
 - Control (yellow)
 - Data (blue)

Uplink frame

- Downlink and Uplink frames are alligned at the eNB
- Uplink frame structure is the same as the downlink
 - Subframe, slot, RE (symbol), RB, TTI, CP
- Content is divided in:
 - Control (green, orange, red, gray)
 - Data (light blue)
 - Random Access (dark blue)



Uplink Frame

5/6/2014

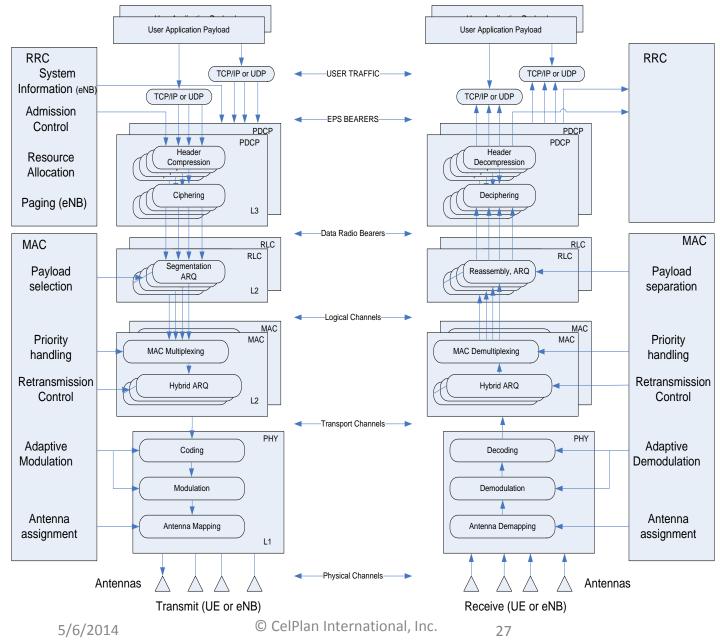
- Information set is a contiguous number of RBs
 - Control,
 Data or
 Random
 Access
- An UE can transmit per TTI
 - Release 8: 1
 set of
 information
 - Release 10:
 2 sets of
 information

25

Frame Content

Signals and Channels

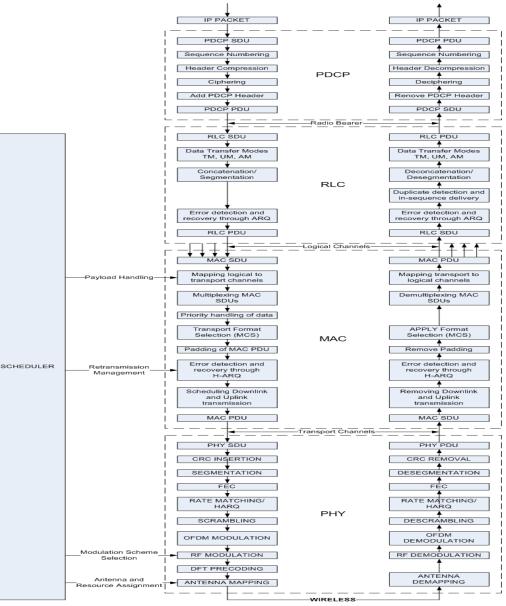
Protocol Layers



Management Layers

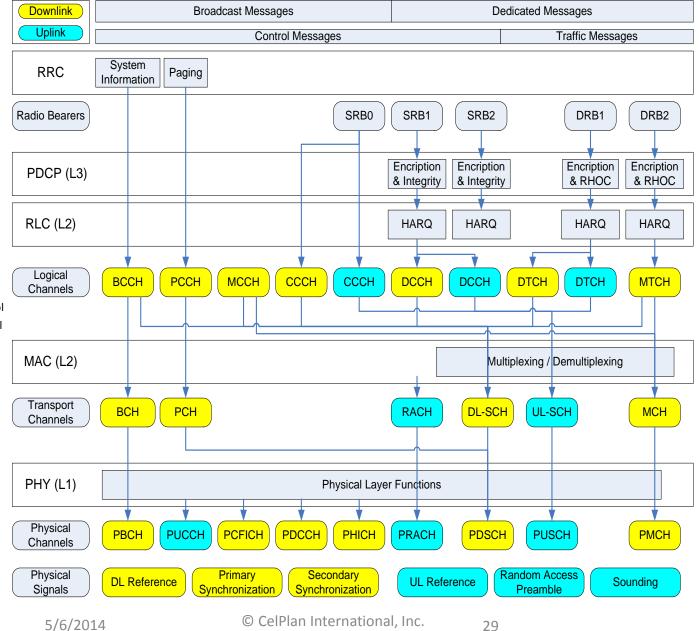
- Radio Resource Management (RRM)
- Radio Resource Control (RRC)
- Medium Access
 Control (MAC)

• Protocol Layers


- Packet Data
 Convergence
 Protocol (PDCP)
- Radio Link Control (RLC)
- Medium Access Control (MAC)
- Physical Layer (PHY)

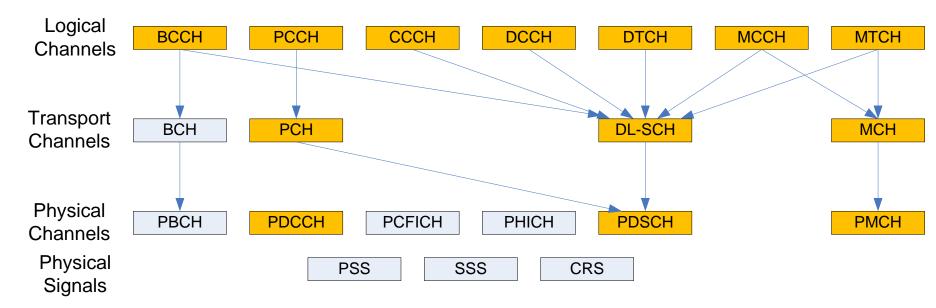
Protocol Overhead

- Packet Data Convergence Protocol (PDCP)
 - Adds 1 or 2 bytes
 - May remove 20/40 IP address bytes
- Radio Link Control (RLC)
 - Adds 1 or 2 bytes
- Medium Access Control (MAC)
 - Adds 5 bytes
- Physical Layer (PHY)
 - Adds 16 bit CRC
 - Adds 1/3 FEC
 - Does rate adjustment (repetition and puncturing)
 - Does Hybrid Repeat Request (HARQ)


© CelPlan International, Inc.

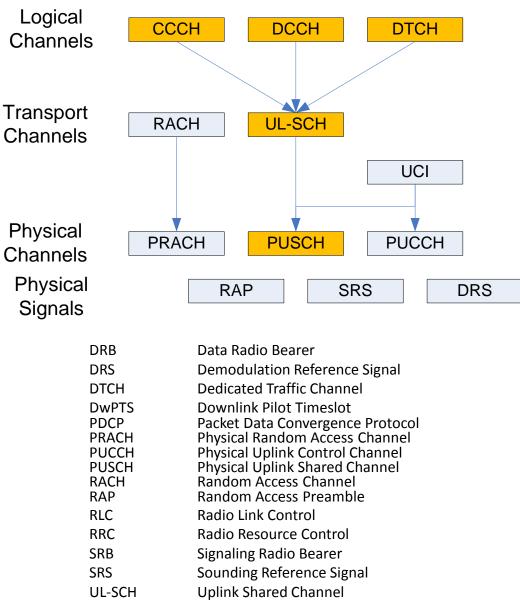
5/6/2014

Channels and Signals



BCCH Broadcast Control Channel BCH Broadcast Channel CCCH **Common Control Channel** CRS Cell Reference Signal DCCH **Dedicated Control Channel** DI-SCH Downlink Shared Channel DRB Data Radio Bearer DRS **Demodulation Reference Signal** DTCH **Dedicated Traffic Channel** DwPTS **Downlink Pilot Timeslot** MCCH Multicast Control Channel Multicast Channel MCH MTCH Multicast Traffic Channel PBCH Physical Broadcast Channel PCCH Physical Control Channel Physical Control Information PCFICH Channel PCH Paging Channel PDCP Packet Data Convergence Protocol Physical Downlink Shared Channel PDSCH Physical Hybrid Information PHICH Channel **Physical Multicast Channel** PMCH PRACH Physical Random Access Channel PSS Primary Synchronization Channel Physical Uplink Control Channel PUCCH PUSCH Physical Uplink Shared Channel RACH Random Access Channel RAP Random Access Preamble RLC Radio Link Control RRC Radio Resource Control SRB Signaling Radio Bearer SRS Sounding Reference Signal SSS Secondary Synchronization Signal Uplink Shared Channel UL-SCH UpPTS Uplink Pilot Timeslot

Downlink channels and signals


ВССН	Broadcast Control Channel	PCFICH	Physical Control Information Channel
ВСН	Broadcast Channel	РСН	Paging Channel
СССН	Common Control Channel	PDCP	Packet Data Convergence Protocol
CRS	Cell Reference Signal	PDSCH	Physical Downlink Shared Channel
DCCH	Dedicated Control Channel	PHICH	Physical Hybrid Information Channel
DL-SCH	Downlink Shared Channel	РМСН	Physical Multicast Channel
DRB	Data Radio Bearer	PSS	Primary Synchronization Channel
DTCH	Dedicated Traffic Channel	RLC	Radio Link Control
МССН	Multicast Control Channel	RRC	Radio Resource Control
MCH	Multicast Channel	SRB	Signaling Radio Bearer
MTCH	Multicast Traffic Channel	SRS	Sounding Reference Signal
PBCH	Physical Broadcast Channel	SSS	Secondary Synchronization Signal
РССН	Physical Control Channel		

5/6/2014

© CelPlan International, Inc.

Uplink Channels and Signals

5/6/2014

© CelPlan International, Inc.

31

Transmission Modes

Transmission Mode

- eNB and UE can communicate through different transmission modes, depending on:
 - UE capability
 - RF channel condition

Mode	PDSCH Transmission Mode (using C-RNTI to address UE)	DCI Format	Search Space	Channel State Information (UE feedback)		
1	Single antenna port (port 0)	1A	Common and UE specific	CQI		
1	Single antenna port (port 0)	1	UE specific	CQI		
2	Transmit Diversity	1A	Common and UE specific	CQI		
- 2		1	UE specific	CQI		
3	Transmit Diversity	1A	Common and UE specific	COLBI		
,	Open Loop Spatial Multiplexing or Transmit Diversity	2A	UE specific	CQI, RI		
	Transmit Diversity	1A	Common and UE specific			
4	Closed Loop Spatial Multiplexing or Transmit Diversity	2	UE specific	CQI, RI, PMI		
5	Transmit Diversity	1A	Common and UE specific	CQI, PMI		
5	Multi-user MIMO	1D	UE specific	CQI, PIMI		
	Transmit Diversity	1A	Common and UE specific	CQI, PMI		
6	Closed Loop Spatial Multiplexing using Single Transmission Layer	1B	UE specific			
7	Single antenna port (port 0) or Transmit Diversity	1A	Common and UE specific	CQI		
	Single antenna port (port 5)	1	UE specific	CQI		
	Single antenna port (port 0) or Transmit Diversity	1A	Common and UE specific	CQI		
8	Dual layer transmission or single antenna port (port 7 and 8)		UE specific	PMI, RI if instructed by eNB		
	Single antenna port (port 0) or Transmit Diversity	1A	Common and UE specific	CQI		
9	Up to 8 layers transmission (port 7 to 14)	2C	UE specific	PTI, PMI, RI if instructed by eNB		

© CelPlan International, Inc.

Modulation and Coding Scheme

•	UE reports one	CQI	modulation	coding rate x 1024	Code Rate	efficiency	Adjusted	CR equiv.	MCS Index	modulation	coding rate x 1024	Code Rate	efficiency
		2	QPSK	120	0.1172	0.2343750	0.2343750	120.00	0	2	120	0.1172	0.2344
	of 15 CQI		QPSK				0.3056641	156.50	1	2	157	0.1533	0.3066
	(Channel Quality	3	QPSK	193	0.1885	0.3769531	0.3769531	193.00	2	2	193	0.1885	0.3770
	· · · · · ·		QPSK				0.4892578	250.50	3	2	251	0.2451	0.4902
	Indicator)	4	QPSK	308	0.3008	0.6015625		308.00	4	2	308	0.3008	0.6016
		_	QPSK	440	0 4205	0.0760504	0.7392578	378.50	5	2	379	0.3701	0.7402
•	CQI values are	5	QPSK QPSK	449	0.4385	0.8769531		449.00	6 7	2	449 526	0.4385 0.5137	0.8770
	mapped to 29	6	QP3K QPSK	602	0.5879	1.1757813	1.0263672	525.50 602.00	8	2	602	0.5137	1.1758
		0	QPSK	002	0.3879	1.1/3/813	1.3261719	679.00	9	2	679	0.6631	1.3262
	MCS		16QAM				1.3261719	339.50	10	4	340	0.3320	1.3281
	(Modulation and	7	16QAM	378	0.3691	1.4765625		378.00	11	4	378	0.3691	1.4766
	•		16QAM				1.6953125	434.00	12	4	434	0.4238	1.6953
	Coding Scheme)	8	16QAM	490	0.4785	1.9140625	1.9140625	490.00	13	4	490	0.4785	1.9141
	indovos		16QAM				2.1601563	553.00	14	4	553	0.5400	2.1602
	indexes	9	16QAM	616	0.6016	2.4062500	2.4062500	616.00	15	4	616	0.6016	2.4063
•	MCS indexes are		16QAM				2.5683594	657.50	16	4	658	0.6426	2.5703
•			64QAM				2.5683594	438.33	17	6	439	0.4287	2.5723
	mapped to 27	10	64QAM	466	0.4551	2.7304688		466.00	18	6	466	0.4551	2.7305
			64QAM	567	0 5 5 2 7	2 2222656	3.0263672	516.50	19	6 6	517 567	0.5049	3.0293 3.3223
	TBS (Transport	11	64QAM 64QAM	507	0.5537	3.3222656	3.3222656	567.00 616.50	20 21	6	616	0.5537 0.6016	3.6094
	Block Size)	12	64QAM	666	0.6504	3.9023438		666.00	21	6	666	0.6504	3.9023
	,	12	64QAM	000	0.0001	515025150	4.2128906	719.00	23	6	719	0.7021	4.2129
	indexes	13	64QAM	772	0.7539	4.5234375		772.00	24	6	772	0.7539	4.5234
			64QAM				4.8193359	822.50	25	6	822	0.8027	4.8164
		14	64QAM	873	0.8525	5.1152344	5.1152344	873.00	26	6	873	0.8525	5.1152
			64QAM				5.3349609	910.50	27	6	910	0.8887	5.3320
		15	64QAM	948	0.9258	5.5546875	5.5546875	948.00	28	6	948	0.9258	5.5547

5/6/2014

© CelPlan International, Inc.

34

Radio Network Temporary Identification (RNTI)

- eNB uses nicknames (RNTI) to identify UEs
 - RNTI is 16 bit long
 - Different RNTIs are assigned at different netwrok phases
 - RNTI is used as an address
 - It is scrambled with the 16 bit CRC added by PHY to the Transport Blocks (TB)

Dedie Network Temperary Identifier	Notwork Oneration	FDD				
Radio Network Temporary Identifier	Network Operation	Ra	Values			
RA-RNTI						
C-RNTI						
Temporary C-RNTI						
Semi-Persistent Scheduling SPS-RNTI	Random Access	0001	003C	60		
TPC-PUCCH-RNTI						
TPC-PUSCH-RNTI						
C-RNTI						
Temporary C-RNTI						
Semi-Persistent Scheduling SPS-RNTI	Cell related	003D	FFF3	65463		
Transmit Power Control for UL TPC-PUCCH-RNTI		0030	1115	03-03		
Transmit Power Control for UL TPC-PUSCH-RNTI						
reserved	Reserved	FFF4	FFFC	9		
M-RNTI	Multicast	FFFD		1		
P-RNTI	Paging	FFFE		1		
SI-RNTI	System Information	FFFF		1		

Frame Organization

Frame Organization

Downlink

- Control area
- Data area

Uplink

٠

- Control area
- RACH area
- Data area

Subframe 0

Transmit Time Interval (TTI)

- Data packet has to be transfered inside a TTI period
- Several packets can be transfered within the same TTI
- The downlink control area maps the data location in the data area for downlink and uplink
- Control information location has to be found through blind search by the UE

Subframe 2

Subframe 1

map map map Subframe 0 Subframe 1 Subframe 2 Subframe 3 Subframe 4 Subframe 5 Subframe 6 Subframe 7 Subframe 8 Subframe 9 Uplink

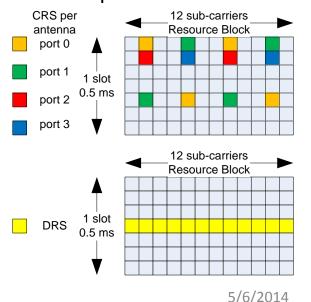
5/6/2014

© CelPlan International, Inc.

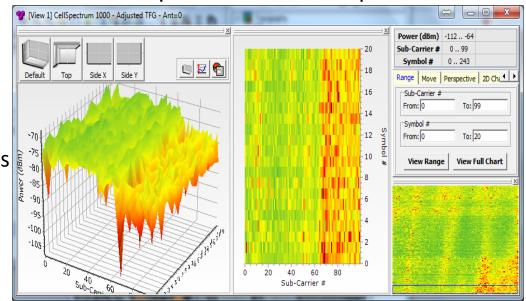
37

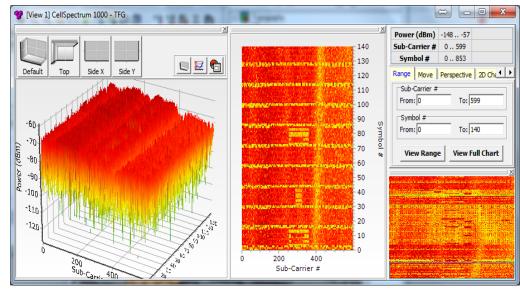
Signals

Signals


Downlink

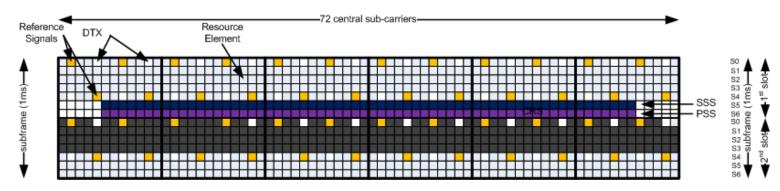
- Primary Synchronization Signal (PSS)
- Secondary Synchronization Signal (SSS)
- Cell Reference Signal (CRS)
 - Location in frame is PCI dependent mod(PCI,6)
 - Each antenna has its own CRS and the antenna does not transmit when the other antennas are tranmittingg their CRSs
- MBSFN (Multimedia Broadcast Single Frequency Network) Reference Signals (MBSFN-RS)
- UE Specific Reference Signals (UE-RS) or Demodulation Reference Signals (DM-RS)
- Positioning Reference Signals (PRS)
- Channel State Information Reference Signals (CSI-RS)
- Uplink
 - Synchronization follows downlink synchronization
 - PUCCH Demodulation Reference Signal (PUCCH-DMRS)
 - PUSCH Demodulation Reference Signal (PUSCH-DMRS)
 - Sounding Reference Signal (SRS)


Channel Equalization

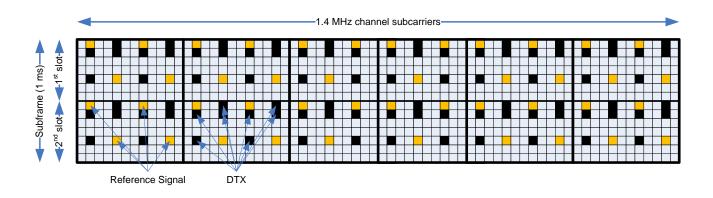


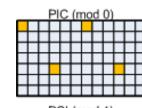
- A broadband channel has significant variations in frequency and time
- This variations have to be corrected before data is extracted
- Reference Signals are used for this purpose
- Reference Signals are known sequences that can be compared to a local reference
- Cell Reference Signals are used in the dowlink
- Demodulation Reference Signals are used in the uplink

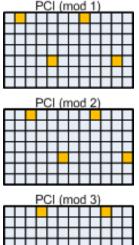
CellSpectrum screen captures

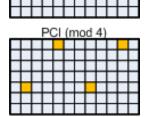

© CelPlan International, Inc.

40

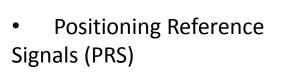

Downlink Signals



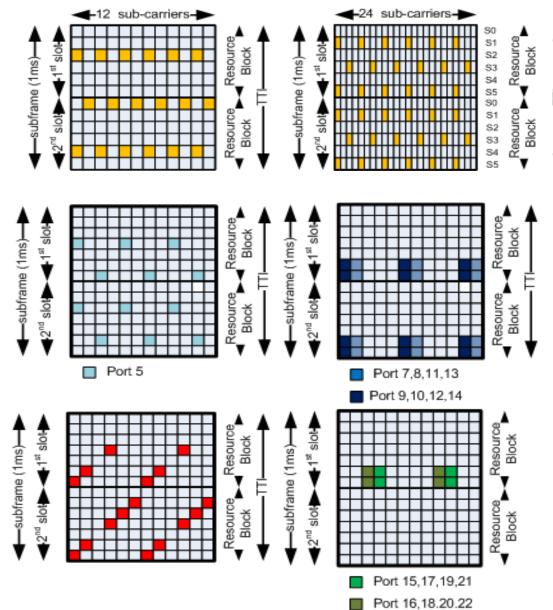

- Primary Synchronization Signal (PSS)
- Secondary Synchronization Signal (SSS)




• Cell Reference Signal (CRS)


5/6/2014

Other Downlink Signals Reference Signals



• MBSFN (Multimedia Broadcast Single Frequency Network) Reference Signals (MBSFN-RS)

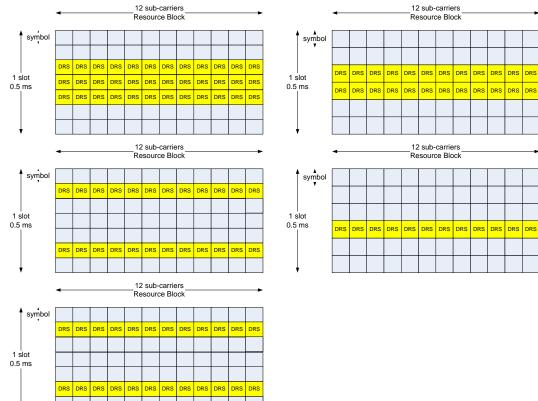
• UE Specific Reference Signals (UE-RS) or Demodulation Reference Signals (DM-RS)

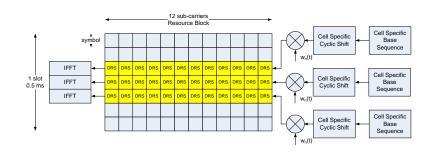
• Channel State Information Reference Signals (CSI-RS)

42

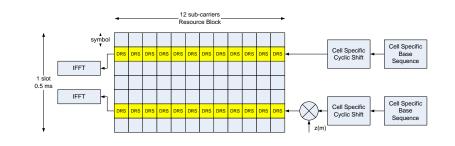
© CelPlan International, Inc.

Uplink Signals



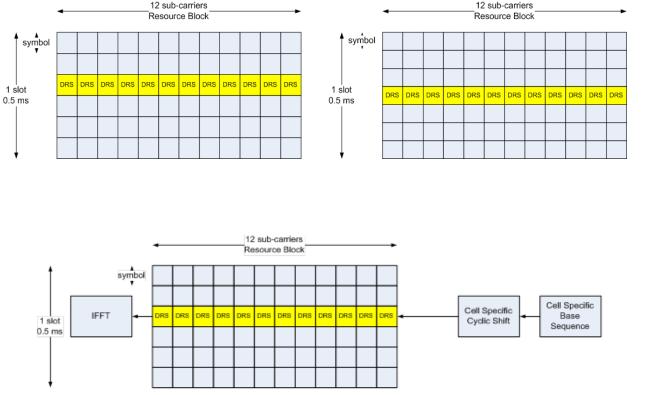

- Synchronization follows downlink synchronization
- PUCCH Demodulation Reference Signal (PUCCH-DMRS)
- PUSCH Demodulation Reference Signal (PUSCH-DMRS)
- Sounding Reference Signal (SRS)

PUCCH DMRS (Demodulation Reference Signals)



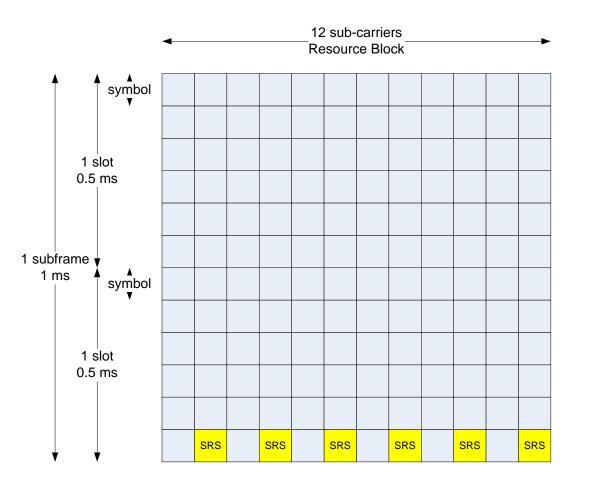
- DMRS is used to equalize the RF channel at the eNB
- There are 7 PUCCH formats
- These formats use different DMRS

5/6/2014



© CelPlan International, Inc.

PUSCH DMRS (Demodulation Reference Signals)



 DMRS is used to equalize the RF channel at the eNB

Sounding Reference Signal (SRS)

- SRS is sent to
 evaluate the RF
 channel
 performance
 outside the RBs
 used for UE
 transmission
- SRS uses resources normally available for PUSCH
- SRS periodicity is programmable

Channels

Downlink Uplink

Downlink Channels

DL Channels

- Broadcast channel
 - PBCH (Physical Broadcast Channel)
 - Sent once a frame with basic channel information
- Subframe Control Area
 - PCFICH (Physical Control Format Indicator Channel)
 - Pre defined location, 4 REGs
 - PHICH (Physical Hybrid Indicator Channel)
 - Pre defined location, 3 REGs per group, scalable number of groups
 - PDCCH (Physical Downlink Control Channel)
 - Allocated to CCE in the remaining of the control area
 - One PDCCH for each PDSCH and PUSCH
- Subframe Data Area
 - PDSCH (Physical Downlink Shared Channel)
 - Location, size and characteristics defined by PDCCH
 - PMCH (Physical Multicast Channel)

Downlink Control Area

Resource Element Group (REG)

- Set of 4 contiguous REs (ignoring RSs), its ê called quadruplet
- Painted in sequence with alternate colors (yellow and green)
- Physical Control Format indicator Channel (PCFICH)
 - Set of 4 REGs
 - location varies with PCI
 - defines number of OFDM symbols in control area

Physical Hybrid Indication Control Channel (PHICH)

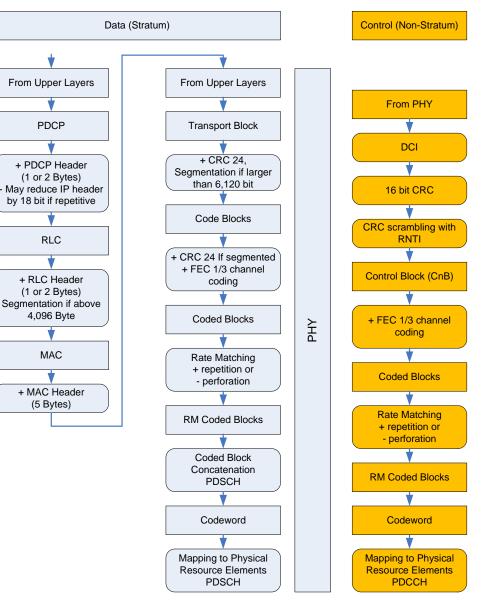
- PHCICH group is a set of 3 REGs
- Number of groups varies with bandwidth and scaling factor (2 to 50)
- Location varies with PCI
- Carries ACK/NACK for UE messages

Control Channel Element (CCE)

Set of 9 REGs

Search Area (SA)

- Set of CCEs for common use or cell specific use
- Painted in sequence with alternate colors (yellow and green)


5/6/2014

© CelPlan International, Inc.

Downlink Control Area

- Downlink Control Information (DCI)
 - Informs how data is mapped in the TTI in terms of Resource Block Groups (RBG)
 - Informs the transmission characteristics of the data
 - Has several formats according to the transmission mode
 - Format is chosen according to the transmission mode and internal policy
- Physical Downlink Control Channel (PDCCH)
 - It uses QPSK modulation
 - Carries DCI information
 - It has 4 formats that are chosen according to RF channel condition
 - Each PDCCH format is allocated to a certain number of CCEs and consequently results in a different coding rate

5/6/2014

Downlink Control Information (DCI)

• DCI carries mapping and transmit characteristics of each PDSCH (sent to one or more UEa) and PUSCH (to be received from an UE)

DCI	DCI Format	Application	RNTI
Uplink Resource Allocation	0	Single Antenna Port Scheduling of single PUSCH codeword	C-RNTI Temporary C-RNTI SPS-RNTI
	1	Single Antenna Port or transmit diversity Scheduling of single PDSCH codeword	C-RNTI Temporary C-RNTI SPS-RNTI
	1A	Single Antenna Port or transmit diversity Compact scheduling of single PDSCH codeword or random Access Initiation	P-RNTI SI-RNTI RA-RNTI C-RNTI Temporary C-RNTI SPS-RNTI
Downlink Resource	1B	Closed loop spatial multiplexing for a single codeword Compact scheduling of single PDSCH codeword with precoding information	C-RNTI
Allocation	1C	Single antenna port or transmit diversity Very compact Resource Block scheduling for single PDSC codeword	P-RNTI SI-RNTI RA-RNTI
	1D	Multi-user MIMO Compact scheduling of single PDSCH codeword with precoding and power offset information	C-RNTI
	2	Closed loop spatial multiplexing for a single codeword Scheduling of one or two PDSCH codewords	C-RNTI
	2A	Open loop spatial multiplexing for a single codeword Scheduling of one or two PDSCH codewords	SPS-RNTI
	3	TC command for PUCCH and PUSCH with 2 bit power adjustments	TPC-PUSCH-RNTI
Transmit Power Control	3A	TC command for PUCCH and PUSCH with 1 bit power adjustments	TPC-PUCCH-RNTI

Transmission Modes x DCI

 Each transmission mode supports one type of Downlink control Information (DCI)

Downlink Control Information (DCI) for	C-R	NTI	SPS-C	-RNTI
downlink mapping	Common	UE Search	Common	UE Search
Transmission Mode	Search Space	Space	Search Space	Space
Single Antenna	1A	1, 1A	1A	1
Transmit Diversity	1A	1, 1A	1A	1, 2A, 2
Open Loop Spatial Multiplexing	-	2A	-	-
Closed Loop Spatial Multiplexing	-	2	-	-
Multi-user MIMO	-	1D	-	-
Closed Loop Spatial Multiplexing, single layer	-	1B	-	-
Closed Loop Spatial Multiplexing, dual layer	-	2B	-	-
Closed Loop Spatial Multiplexing, eight layer	-	2C	-	-

PDCCH formats

 DCI size (in bit) depends on the DCI format and bandwidth

 Each DCI can be spread to the RF channel requirements according to the 4 PDCCH formats, resulting in different FEC spreading codes

			PDCCH Co	oding Rate			
				PDCCH	PDCCH	PDCCH	PDCCH
				Format 0	Format 1	Format 2	Format 3
		r of CCE		1	2	4	8
		Quadruplets		9	18	36	72
	Numbe	r of bits		72	144	288	576
DCI Format	Channel Bandwidth (MHz)	DCI data bits	DCI bits after CRC				
0/ 1A/ 3	5	35	41	0.569	0.285	0.142	0.071
0/ 1A/ 3 /3A	10	37	43	0.597	0.299	0.149	0.075
754	20	38	44	0.611	0.306	0.153	0.076
	5	37	43	0.597	0.299	0.149	0.075
1	10	41	47	0.653	0.326	0.163	0.082
	20	49	55	0.764	0.382	0.191	0.095
	5	37	43	0.597	0.299	0.149	0.075
1B	10	38	44	0.611	0.306	0.153	0.076
	20	40	46	0.639	0.319	0.160	0.080
	5	22	28	0.389	0.194	0.097	0.049
1C	10	23	29	0.403	0.201	0.101	0.050
	20	25	31	0.431	0.215	0.108	0.054
	5	37	43	0.597	0.299	0.149	0.075
1D	10	38	44	0.611	0.306	0.153	0.076
	20	40	46	0.639	0.319	0.160	0.080
	5	49	55	0.764	0.382	0.191	0.095
2	10	53	59	0.819	0.410	0.205	0.102
	20	61	67	0.931	0.465	0.233	0.116
	5	46	52	0.722	0.361	0.181	0.090
2A/2B	10	51	57	0.792	0.396	0.198	0.099
	20	58	64	0.889	0.444	0.222	0.111
	5	48	54	0.750	0.375	0.188	0.094
2C	10	52	58	0.806	0.403	0.201	0.101
	20	60	66	0.917	0.458	0.229	0.115
	5	44	50	0.694	0.347	0.174	0.087
4	10	46	52	0.722	0.361	0.181	0.090
	20	48	54	0.750	0.375	0.188	0.094

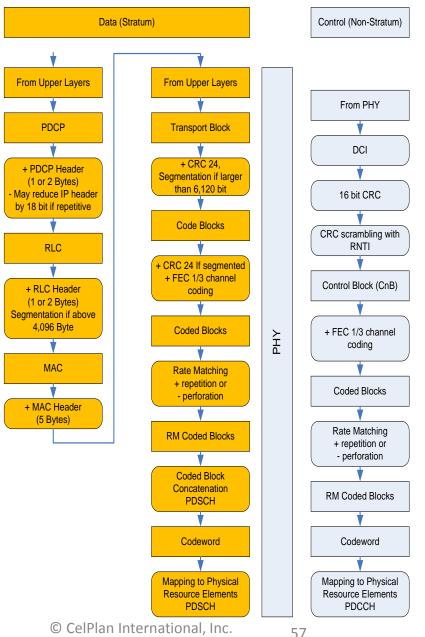
5/6/2014

© CelPlan International, Inc.

PDCCH Allocation and Detection

- eNB PDCCH assembly and allocation
 - PHY gets DCl information
 - PHY adds a 16 bit CRC
 - PHY scrambles CRC with UE RNTI, forming a Control Block (CnB)
 - PHY assigns a PDCCH format to the CnB according to RF channel requirements (MCS)
 - CnB is sent to 1/3 FEC Turbo Coder
 - Coded Block is rate matched to the PDCCH format size
 - PHY assigns PDCCH to a free set of CCEs
 - PHY maps PDCCH to CCE Resource Elements
- UE is not aware of a PDCCH allocation, but is aware of the frame area it is allocated
- UE blind searches all the CCE positions for a broadcasted or UE specific PDCCH
 - UE looks at every CCE position for a CRC and unscrambles with the broadcast and its RNTI and checks it validity
 - When successful UE found a valid PDCCH message

DL Data Area



- DL Data Allocation Types
 - Type 0- RBG allocation
 - Type 1- RBG subset allocation
 - Type 2- Virtual RBG allocation
 - Contiguous
 - Distributed

Downlink Data Area

- Transport Block (TB)
- Transport Block Size (TBS)
- Code Block (CB)
- Codeword (CW)
- Physical Downlink Shared Channel (PDSCH)

Data Allocation type 0

- Resource Block Group (RBG)
 - Set of contiguous PRBs
 - RBG size is bandwidth dependent
- Data Allocation type 0: simple RBG allocation
 - Bit map specifies the RBG allocation

Resource Block Group		Ba	andwi	dth (N	/Hz)	-
	1.4	3	5	10	15	20
Total Number of RBs	6	15	25	50	75	100
RBG Size (RB)	1	2	2	3	4	4
Total Number of RBGs	6	8	13	17	19	25
Bit map size (bit)	6	8	13	17	19	25

Physical Resource Blocks (PRB)	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
Resource Block Groups (RBG)	(D		1		2	е	3	4	4		5	6	5		7	5	3		9]	10	1	1	12

Bit Map	0	1	1	0	0	1	0	0	0	1	1	0	0
---------	---	---	---	---	---	---	---	---	---	---	---	---	---

Data Allocation type 1

- Data Allocation type 1: RBG subsets
 - Objective was to allow some resource segmentation between cells
 - Number of subsets is bandwidth dependable

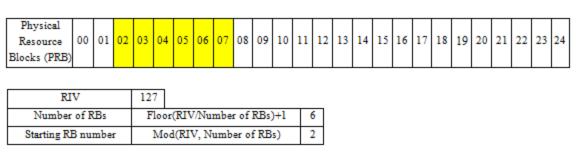
Resource Allocation Type 1												
DCI formats: 1, 2, 2A, 2B, 2C		Ва	ndwid	dth (M	IHz)							
	1.4	3	5	10	15	20						
Total Number of RBs in frame	N/A	15	25	50	75	100						
RBG Size (RB)	N/A	2	2	3	4	4						
Total Number of RBGs	N/A	8	13	17	19	25						
Number of RBG subsets	N/A	2	2	3	4	4						
RBG subsets (bit)	N/A	1	1	2	2	2						
Offset flag (bit)	N/A	1	1	1	1	1						
Size of bit map (bit)	N/A	8	13	17	19	25						

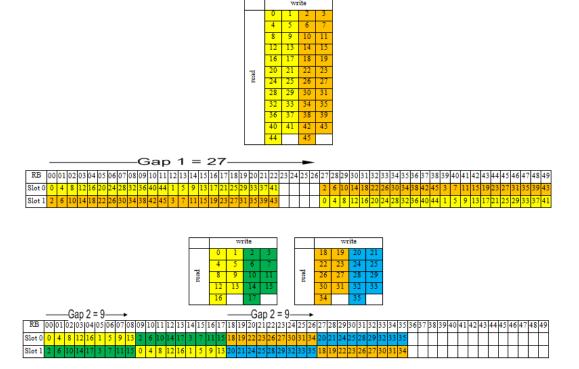
Physical																									
Resource	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
Blocks (PRB)																									
Resource																									
Block Groups	(0	1	L	2	2	1	3	4	4	1	5	6	5	1	7	8	3	9)	1	0	1	1	12
(RBG)																									
RBG subset 1	(0			2	2			4	1			6	5			8	}			1	0			12
RBG subset 2]	l				3			-	5			ĺ	7			9	,			1	1	

Subset	1				
Offset flag	1				
Bit Map	0	1	0	0	0

Subset	2				
Offset flag	0				
Bit Map	1	1	0	1	0

© CelPlan International, Inc.

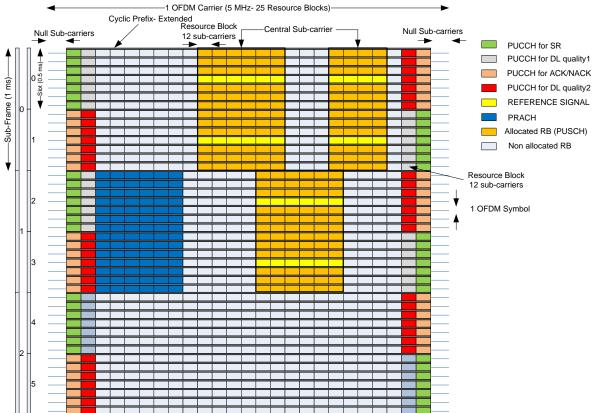

59


5/6/2014

Data Allocation type 2

- Data Allocation type 2: reduced mapping and added diversity
- Contiguous allocation
 - Resource Indication
 Value (RIV): indicates PRB start number and number of consecutive PRBs
- Distributed allocation
 - Resource Blocks are assigned to Virtual Resource Blocks
 - Interleaved in two (gap1) or four groups (gap2)
 - Then mapped to Physical Resource Groups
 - An RB pair is allocated with a separation (gap) between the first and second slot

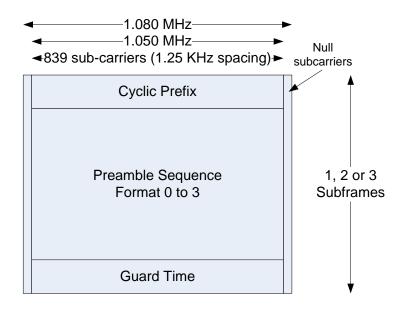
60



Uplink Channels

UL Channels

- Subframe Control Area
 - PUCCH
- Subframe Random Access Area
 - PRACH
- Subframe Data Area
 - PUSCH
 - PUMCH



Uplink RACH Area

- RACH areas are announced in SIB2
- There are 4 RACH area formats

RACH configuration	Range	Step
Number of RA preambles	4 to 64	4
Size of RA preamble Group A	4 to 60	
Message size Group A	56, 14, 208, 256 bit	
Message power offset Group B	0, 5, 8, 10, 12, 15, 18 dB	
Power ramping step size	0, 2, 4,6 dB	
Preamble initial received target power	-120 to -90 dBm	2
Maximum number of preamble	3, 4, 5, 6, 7, 8, 10, 20, 50, 100,	
transmissions	200	
Random Access response window size	2, 3, 4, 5, 6, 7, 8, 10 subframes	
	8, 16, 24, 32, 40, 48, 56, 64	
MAC contention resolution timer	subframes	
Maximum number of HARQ transmissions	1 to 8	1

63

PRACH Format	Duplex	RACH sub- carriers	Sub- carrier width (kHz)	Total width (kHz)	Cell sub- carriers	RBs	PRACH CP (μs)	PRACH Symbols	Sequence (us)	Guard Time (µs)	Total duration (μs)	Sub- frames	Maximum Cell Range (km)	Cell size
0	FDD & TDD	839	1.25	1,049	69.92	6	103.13	1	800	96.88	1000	1	14.5	medium cells
1	FDD & TDD	839	1.25	1,049	69.92	6	684.38	1	800	515.63	2000	2	77.3	very large cells
2	FDD & TDD	839	1.25	1,049	69.92	6	203.13	2	1600	196.88	2000	2	29.5	large cells
3	FDD & TDD	839	1.25	1,049	69.92	6	684.38	2	1600	715.63	3000	3	107.3	extra-large cells
4	TDD	139	7.5	1,043	69.50	6	14.58	0.17	133.33	9.38	157	0.16	1.4	small cells

PRACH

- There are 64 sequences that can be used for PRACH access
- These sequences are divided in:
 - Contention based
 - Group A
 - Group B
 - Non contention based

PRACH configuration	Range	Configuration criteria
		Cell range
PRACH Configuration	0 to 63	PRACH preamble capacity
Index	01005	eNB processing load
		RF channel performance
Zero correlation zone	0 to 15	Cell Range
configuration		Root-sequence index reuse pattern
configuration		RF channel performance
High speed flag	false/true	UE mobility
nigh speed hag		Root-sequence index reuse pattern
Root sequence index	0 to 837	Avoid reuse in neighbor cells
	0 to 94	PUCCH Resource Block allocation
PRACH frequency offset		Avoid PUSCH Resource Block fragmentation

	Format 0 to 3							
	Zero Correlation zone (high speed flag= false) Signaled Cyclic value Shift		ne (high speed flag= false)Preamble Sequences per Root Sequence		Root Sequences Reuse Pattern	Cell Range (km)		
_	1	13	64	1	838	0.76		
	2	15	55	2	419	1.04		
SS	3	18	46	2	419	1.47		
	4	22	38	2	419	2.04		
	5	26	32	2	419	2.62		
	6	32	26	3	279	3.47		
	7	38	22	3	279	4.33		
	8	46	18	4	209	5.48		
	9	59	14	5	167	7.34		
	10	76	11	6	139	9.77		
	11	93	9	8	104	12.2		
3	12	119	7	10	83	15.9		
•	13	167	5	13	64	22.8		
	14	279	3	22	38	38.8		
	15	419	2	32	26	58.8		
	0	838	1	64	13	118.8		

Contention Based	Random Access	Non-Contention Based Random Access		
Group A Poor coverage UE or low amount of data to be sent	Group B Good coverage UE or large amount of data to be sent	Handover UE		
0 Sequence				

Subheader Subheader 1 Subheader 2 Subheader n 8 bit 8 bit 8 bit

E/T/R/R/BI subheader						
E (extension)	T (type)	R (reserved)	R	BI		
1 bit	1 bit	1 bit	1 bit	4 bit		

E/T/RAPID

8 bit

Random Access

Response 1

48 bit

E/T/ RAPID (Random Access Preamble Identity)					
E (extension) T (type) RAPID					
1 bit	1 bit	6 bit			
1 bit	1 DIT	5 DIT			

Random Access Response (RAR) payload				
R (1 bit)	Timing Advance (7 bit)			
+ Timing Advance (4 bit) Uplink Grant (4 bit)				
+ Uplink Grant (8 bit)				
+ Uplink Grant (8 bit)				
Temporary C-RNTI (8 bit)				
+ Temporary C-RNTI (8 bit)				

ВІ	Backoff (ms)	BI	Backoff (ms)	BI	Backoff (ms)	BI	Backoff (ms)
0	0	4	40	8	160	12	960
1	10	5	60	9	240	13	reserved
2	20	6	80	10	320	14	reserved
3	30	7	120	11	480	15	reserved

5/6/2014

© CelPlan International, Inc.

Random Access Response (RAR)

E/T/R/R/BI

header

E/T/RAPID

E/T/RAPID

- RAR provides a Temporary RNTI
- RAR provides a back off value

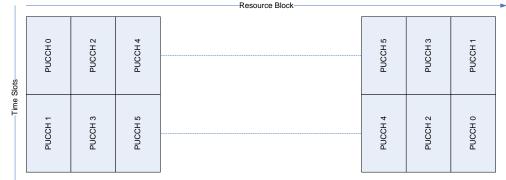
Random Access

Response n

48 bit

payload

Random Access

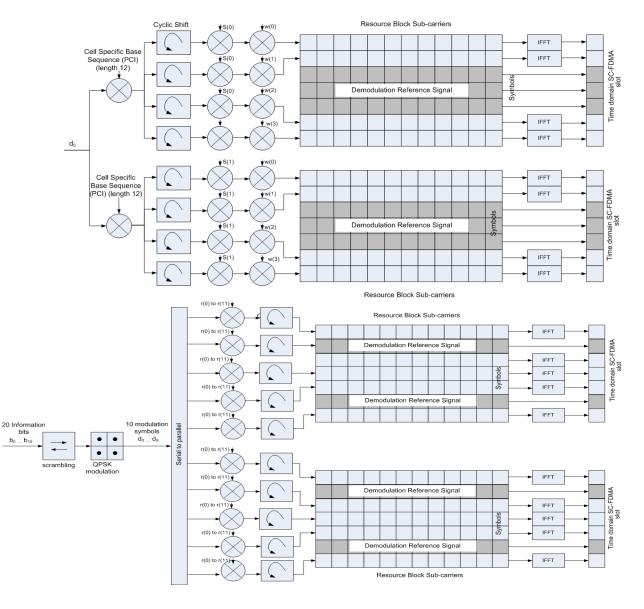

Response 2

48 bit

PUCCH

- Each PUCCH is assihned two RBs
- There are two types of PUCCH (standard and SR)
- Several UEs share the same RBs
- PUCCH has 7 formats and can signal, ACK, SR and CSI
- PUCCH uses a combination of base sequences, cyclic shifts and orhtogonal codes to differentitate between UEs

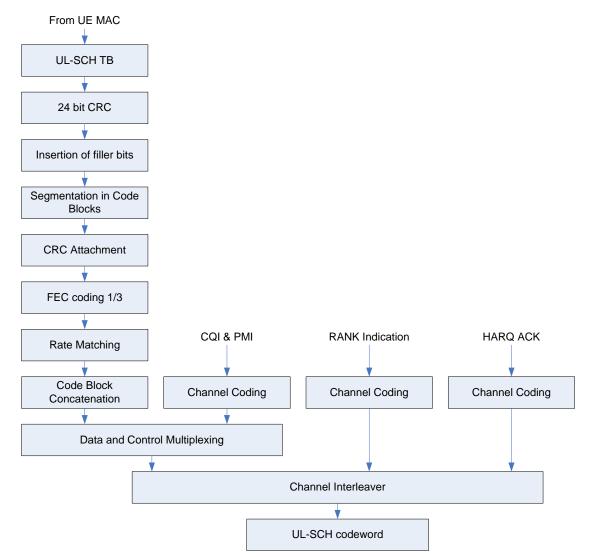
f RE UCI data
ended CP Normal CP Extended CP
Scheduling Request (SR)
1HARQ - ACK
+36=84 1HARQ-ACK +SR
2HARQ-ACK, 2HARQ-ACK+SR, 4HARQ-ACK
4HARQ-ACK
CSI Report,
20 CSI Report CSI Report+2HARQ-ACK
CSI Report NA
+1HARQ-ACK
CSI Report NA
+2HARQ-ACK
10HARQ-ACK, 10HARQ-ACK+SR
20HARQ-ACK, 20HARQ-ACK+SR


66

PUCCH signal generation

5/6/2014

• PUCCH uses a combinatio n of base sequences, cyclic shifts and orhtogonal codes to differentita te between UEs


© CelPlan International, Inc.

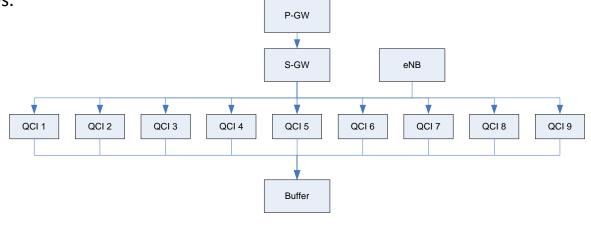
Uplink Data Area (PUSCH)

- PUSCH follows

 a similar coding
 procedure as
 the one done
 for PUSCH
- Both use the same TBS table
- CSI information and HARQ are coded separately

68

Data Scheduling and Allocation


Data scheduling

• eNB stores data in queues according to its QCI (QoS Class Identifier), which is inferred either from the Internet protocol used or any other established criteria

QCI	Resource type	Priority	Packet Delay (ms)	Packet Error Loss Rate	Service Examples
1		2	100	10-2	Conversational voice
2	GBR	4	150	10-3	Conversational video (live streaming)
3	GDK	3	50	10-	Real Time Gaming
4		5	300		Non-conversational video (buffered streaming)
5		1	100	10-6	IMS (IP Multimedia Subsystem) signaling
6		6	300		Video (buffered streaming), TCP (Transmission Control Protocol) applications
7	Non GBR	7	100	10-3	Voice, video (live streaming), Interactive gaming
8		8			
9		9	300	10 ⁻⁶	Video (buffered streaming), TCP applications

- Each QCI has several additional parameters that are specified for GBR (Guaranteed Bit Rate) and Non-GBR bearers
- The scheduler analyses the data in the different queues and applies the criteria it is programmed for. Schedulers are not specified by 3GPP, but the most common types of schedulers are:
- Round Robin Proportional fairness Weighted proportional fairness
- Scheduling affects the sequence in which the received packets are sent to the transmission queue (buffer). This is illustrated in the diagram below. The eNB adds broadcast and UE specific messages to respective queues.

Data allocation by PHY

- eNB PHY gets data from scheduler
- eNB PHY allocates data received from its MAC in the DL frame
 - Data location and its transmission characteristics are sent in a DCI message in the control area, in the same TTI
- eNB PHY allocates data for the UE in the UL frame
 - UE does not have a mechanism to request a specific amount of data, it just can indicate that it needs an allocation for data
 - Allocation is done by the eNB based on UE reported buffer size
 - Data location and its transmission characteristics are sent in a DCI message in the control area, to be implemented by the UE 4 subframes later (4 ms)

Data Allocation by PHY

- Transmission Mode (TM) and Modulation and Coding Scheme (MCS) are chosen for DL or UL
 - PHY estimates the SNR requirements in the DL and UL to communicate with UE
 - PHY chooses TM and MCS
 - Broadcast information is always sent using single port or diversity, QPSK modulation and network defined coding rate for cell edge
 - UE specific information is sent based on:
 - UL: PHY receive measurements, HARQ statistics, acknowledge statistics
 - DL: CQI reports from UE, HARQ statistics, acknowledge statistics

How does PHY prepare DCI content?

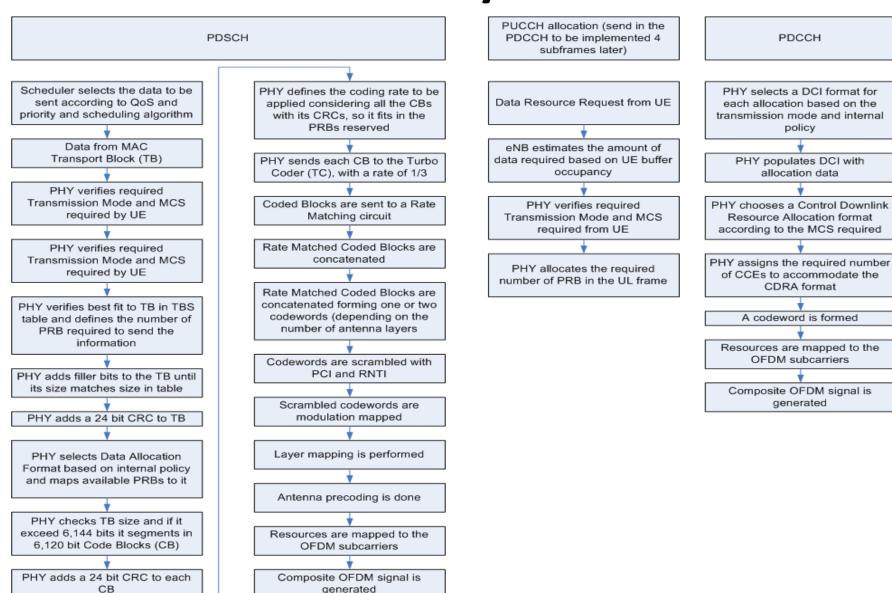
- Downlink
 - PHY get TB from MAC and adds 24 bit CRC
 - PHY adds address to TB by scrambling CRC with applicable RNTI
 - Bit scrubbing
 - PHY segments TB in code blocks if TB size larger than 6,120 bit
 - PHY adds a 24 bit CRC to each Code Block (CB)
- Uplink
 - PHY estimates the number of resources required by the UE, based on its Buffer Status, reported in uplink MAC if UE transmitted recently or in a Buffer Status, requested previously by the eNB
- PHY chooses the Data Resource Allocation format, based on internal policy
- PHY gets the MCS previously calculated, maps it to a TBI (Transport Block Index) value and consults a pre-defined TBS (Transport Block Size) table
 - TBS table gives the number of Resource Blocks to be used for the different MCS
 - TBS table is standardized for different TBIs assuming an availability of 120 REs per RB pair (PRB)
 - The same TBS table applies to DL and UL
- PHY finds the closest Transport Block size with a stronger MCS than the one required and the number of RBs that correspond to a multiple of the RBG specified for the channel bandwidth
- PHY fills in the original TB to the TBS found in the table with dummy bits

How does PHY prepare DCI content?

- If TB has more than 6,120 bit it segments the TB in Coding Blocks (CB), with a maximum of 6,120 bit

 The last CB is the one left with the remaining bits
- PHY adds to each CB a 24 bit CRC that uses a different algorithm then the one used for TB
- Each CB is then sent to the turbo encoder with a FEC ratio of 1/3
- PHY maps the PRBs it will use and based on the available REs calculates the number of available bits
- Rate matching (repetition and puncturing) is performed next to match the TB with filler bits and CRC to the available bits

How UE decodes TB?


- The UE gets the MCS and the PRB allocation in the DCI message
- Based on those parameters it finds the size of the TB sent
- UE does then the calculation of the number of CBs (if any) and proceeds to decode the TB with the filler bits and CRC
- It checks the CRC and if it agrees it sends the TB to the MAC
- UE MAC reads the TB subheaders and defines the position and size of its SDU

How does PHY prepare DCI content?

- PHY allocates the number of PRBs and calculates for those PRBS the actual code rate that matches the PRB available resources to the TB size
- This is done the same way for downlink and uplink allocations
- All this information populates then the DCI format chosen
- Each DCI has a 16 bit CRC added
- This CRC is scrambled with the appropriate RNTI, to save addressing bits
- This co

Data Allocation by PHY

5/6/2014

Allocation Example

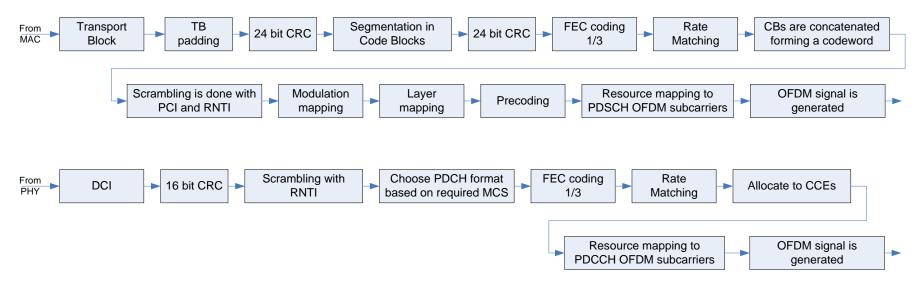
- eNB PHY calculates the PRB average capacity
- After allocation the exact PRB capacity will be calculated

Downlink capacity per PRB		
eNB calculates available bits per PRB downlink (2 antenna, 3 control symbols)		
RE per PRB and TTI	168	RE
Control, CRS	48	RE
RE available for DL-SCH	120	RE
QPSK	240	bit
16QAM	480	bit
64QAM	720	bit
Uplink capacity per PRB		
eNB calculates available bits per PRB (1 antenna)		
RE per TTI	168	RE
DM-RS	24	RE
RE available for UL-SCH	144	RE
QPSK	288	bit
16QAM	576	bit
64QAM	864	bit

78

Allocation Example (cont.)

- eNB PHY finds the best fit in the TBS table in terms of TB size and number of RBS that ٠ satisfy MCS
 - In the downlink PHY pads the TB to the size in TB table
 - In the uplink PHY allocates the number of RBs found in the TBS table _

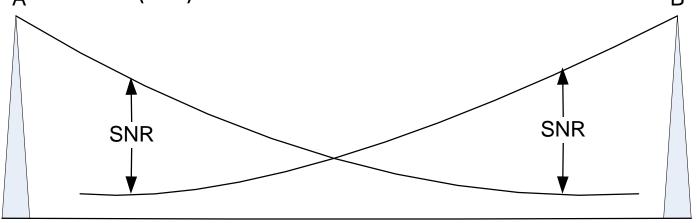

Downlink Allocation			
eNB calculates the MCS for the DL-SCH, based on the UE sent CQI and previous results		15	
MCS corresponds to		16QAM	0.6015625
eNB gets the size of the MAC to be sent to UE		6152	bit
eNB gets the smallest number of RBs that satisfies the MCS and TB size		22	RB
		6200	bit
	MCS	15	
eNB adds padding bits to TB that will be transmitted to the UE		48	bit
eNB adds CRC to TB		24	bit
loaded TB size		6224	bit
eNB breaks TB in CBs			
	CB 1	6144	
	CB2	128	
codeword		6272	
eNB calculates the effective code rate		0.594	
eNB allocates RBs			

Uplink Allocation					
eNB calculates the MCS for the UL-SC		8	0.4875		
MCS corresponds to				QPSK	
eNB calculates the UE uplink data req	uirement based o	n UE buffer size information		8	bits
eNB calculates gets the smallest numl		1	RB		
				16	bits
		N	ICS	0	
eNB allocates RBs					
	5/6/2014	© CelPlan International, Inc.		79	

Data Allocation by eNB PHY

- Downlink data allocation procedure
 - PDSCH
 - PDCCH

- Uplink data allocation procedure
 - PDCCH
 - Data allocation is done at the UE



Cellular Reuse

Cellular Reuse

- Cellular technology is based on a physical separation between the usage of the same resources
- Each modulation requires a certain SNR, depending on the environment characteristics
- The separation has to be larger for Rayleigh environments (non LOS) than for Gaussian ones (LOS)

←Cell A→

←Cell B→

Required SNR (dB)							
QPSK 16QAM 64 QAM							
Gaussian	2.5	8.2	12.1				
Rayleigh	15.7	21.3	25				

5/6/2014 © CelPlan International, Inc. 82

Reuse in an omni scenario

• There is one prevalent interference case

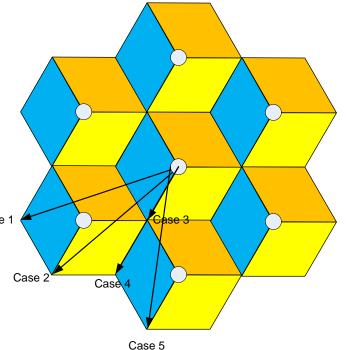
Reuse	7	omni	20 db/dec		
	distance		path loss		SNR
	signals	interference	signals	interference	
case 1	1	2.6	0.0	8.5	8.5

Reuse	7	omni	40 dB/dec		
	distance		path loss		SNR
	signals	interference	signal	interference	
case 1	1	2.6	0.0	16.9	16.9

© CelPlan International, Inc.

83

5/6/2014

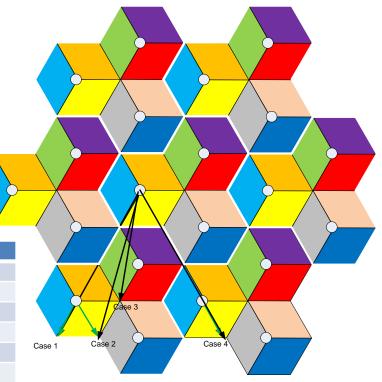

Sector Scenario with a reuse 3

• There are 5 interference cases

Reuse	3	sector	20 dB/dec			
	distance		path	loss	SNR	Case
	signal	interference	signal	interference		
case 1	1	2.6	0.0	8.5	8.5	
case 2	1	2.6	0.0	8.5	8.5	
case 3	1	1.0	0.0	0.0	0.0	
case 4	1	2	0.0	6.0	6.0	
case 5	1	2.6	0.0	8.5	8.5	
average					7.8	

Reuse	3	sector	40 dB/dec		
	distance		path loss		SNR
	signal	interference	signal	interference	
case 1	1	2.6	0.0	16.9	16.9
case 2	1	2.6	0.0	16.9	16.9
case 3	1	1.0	0.0	0.0	0.0
case 4	1	2	0.0	12.0	12.0
case 5	1	2.6	0.0	16.9	16.9
average					15.7

84


Sector Scenario reuse 9

• There are 4 interference cases

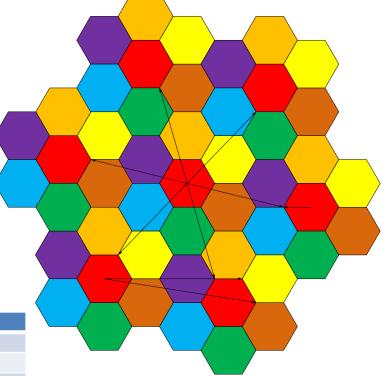
Reuse	9	sector	20 dB/dec		
	distance (cell radius)		path loss		SNR
	signal	interference	signal	interference	
case 1	1	4	0.0	12.0	12.0
case 2	1	3.6	0.0	11.1	11.1
case 3	1	2.6	0.0	8.5	8.5
case 4	1	4.0	0.0	12.0	12.0
average					10.9

Reuse	9	sector	40 dB/dec		
	distance (cell radius)		path	loss	SNR
	signal	interference	signal	interference	
case 1	1	4	0.0	24.1	24.1
case 2	1	3.6	0.0	22.3	22.3
case 3	1	2.6	0.0	16.9	16.9
case 4	1	4.0	0.0	24.1	24.1
average					21.8

5/6/2014

© CelPlan International, Inc.

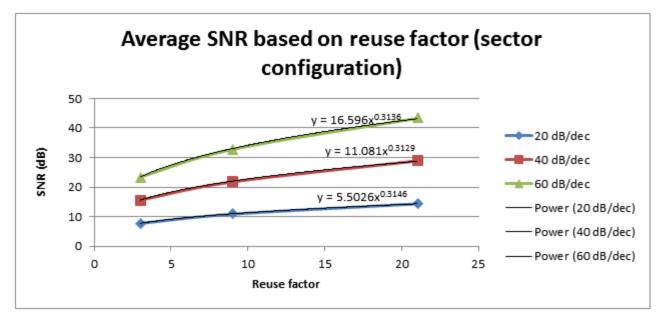
Sector Scenario reuse 21


• There are 2 prevalent interference cases

Reuse	21	sector			
	distance		path	SNR	
	signal	interference	signal	interference	
case 1	1	5.0	0.0	14.0	14.0
case 2	1	5.6	0.0	14.9	14.9
average					14.4

Reuse	21	sector			
	distance		path	SNR	
	signal	interference	signal	interference	
case 1	1	5.0	0.0	28.0	28.0
case 2	1	5.6	0.0	29.8	29.8
average					28.9

5/6/2014


© CelPlan International, Inc.

Reuse factor for different environments

- The equations to find the reuse from the target SNR are:
- For 20 dB/dec:
- For 40 dB/dec:
- For 60 dB/dec:

$$x = \left(\frac{SNR}{5.5026}\right)^{3.18877551}$$
$$x = \left(\frac{SNR}{11.081}\right)^{3.195909}$$
$$x = \left(\frac{SNR}{11.081}\right)^{3.17864}$$
$$x = \left(\frac{SNR}{16.596}\right)^{3.17864}$$

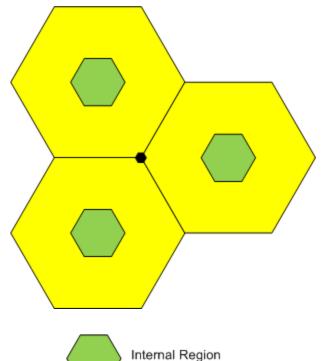
Typical reuse factors

• Typical reuse factor for different density cities

Lubumbashi	Path slope	Coverage	Environment	Target Modulation	SNR (dB)	Reuse
Suburban	20 dB/dec	indoor	Rayleigh	16QAM	21.3	8
Suburban	20 dB/dec	outdoor	Gaussian	64QAM	12.1	12

Washington,						
Rayleigh	Path slope	Coverage	Environment	Target Modulation	SNR (dB)	Reuse
Urban	40 dB/dec	indoor	Rayleigh	16QAM	21.3	8
Urban	40 dB/dec	outdoor	Rice	16QAM	14.75	2.5

Chicago						
Downtown, São						
Paulo downtown	Path slope	Coverage	Environment	Target Modulation	SNR (dB)	Reuse
Dense Urban	60dB/dec	indoor	Rayleigh	64QAM	25	3.7
Dense Urban	60dB/dec	outdoor	Rayleigh	64QAM	25	3.7



Reuse in LTE

Reuse in LTE

- LTE was conceived for reuse 1
- A cell was divided in an interior (center) and and an exterior (edge) regions
- The exterior region would use very low coding rates (in the order of 0.07)
- The interior region would use higher coding rates
- No criteria was established to define exterior and interior regions
- Broadcast information has to use low coding rates
- Intercell Cell Interference Coordination (ICIC) was considered to improve the performance, four cases were proposed
 - No ICIC
 - Start-Stop Index (SSI)
 - Start Index (SI)
 - Random Start Index (RSI)
 - Start Index Geometry Weight (SIGW)
 - Random Index Geometry Weight (RIGW)

External Region

© CelPlan International, Inc.

90

5/6/2014

Bit scrubbing

- 3GPP decision of implementing a reuse of 1 in LTE implied in:
 - High repetition rates for control information
 - This lead to bit scrubbing (bit shaving) and complexity
 - Blind decoding, implicit addressing, multiple options
 - High data spread rates that trade reuse of 1 for low throughputs
 - Complex transmission modes
 - Some transmission modes can be practically used in few locations in the network (if at all)
- 3GPP provided mechanisms to avoid resource reuse conflicts
 - It suggested that interference is concentrated at cell edge and that reuse of 1 can be done in cell center
 - It did not specify how this should be done
 - Several implementation schemes have been suggested, none full proof
 - Traditional segmentation and zoning still being used

91

Reuse in LTE

- Mechanisms
 - X2 interface
 - Intercell Cell Interference Coordination (ICIC)
 - Self Organizing Network
 - Power control
- Practical approach
 - Segmentation (Resource Block Groups)
 - Zoning (Subframes)

ICIC

- Intercell Cell Interference Coordination (ICIC) was considered to improve the performance, six cases were proposed
 - No ICIC
 - Start-Stop Index (SSI)
 - Start Index (SI)
 - Random Start Index (RSI)
 - Start Index Geometry Weight (SIGW)
 - Random Index Geometry Weight (RIGW)
- The difficulty is to define if a user is in the internal or external region. Criterias are:
 - Distance
 - Signal level
 - SNR
 - Neighbors

CelPlan Patent Applications

- CelPlan proposed a method of regionalizing a cell in several sub-cells according to different criteria
- CelPlan proposed a method of allocating resources to cells from a pool based on owned and shared resource tables

APPLICATION FOR UNITED STATES LETTERS PATENT

Title

APPARATUS TO PERFORM RESOURCE ASSIGNMENT IN A WIRELESS NETWORK

> Inventor(s): Leonhard KOROWAJCZUK

> > Date Filed: February , 2013

Attorney Docket No.: 7230-102

APPLICATION FOR UNITED STATES LETTERS PATENT

Title

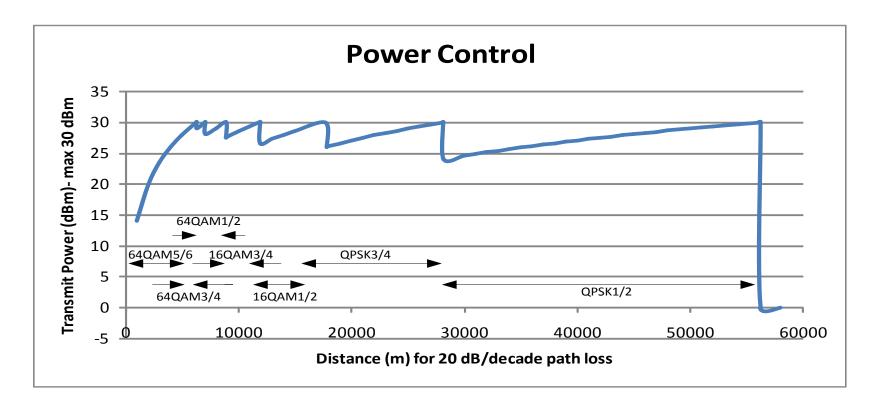
CHARACTERIZING A BROADBAND WIRELESS CHANNEL

Inventor(s): Leonhard KOROWAJCZUK

> Date Filed: July 25, 2013

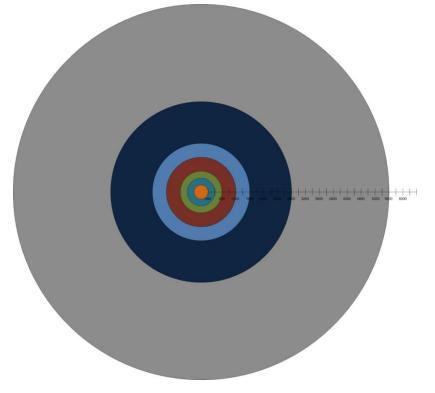
Attorney Docket No.: 7230-101

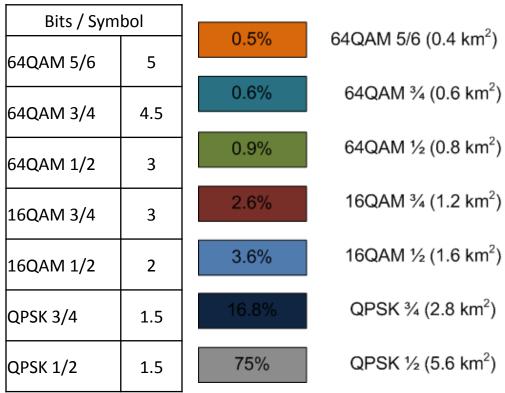
© CelPlan International, Inc.


94

5/6/2014

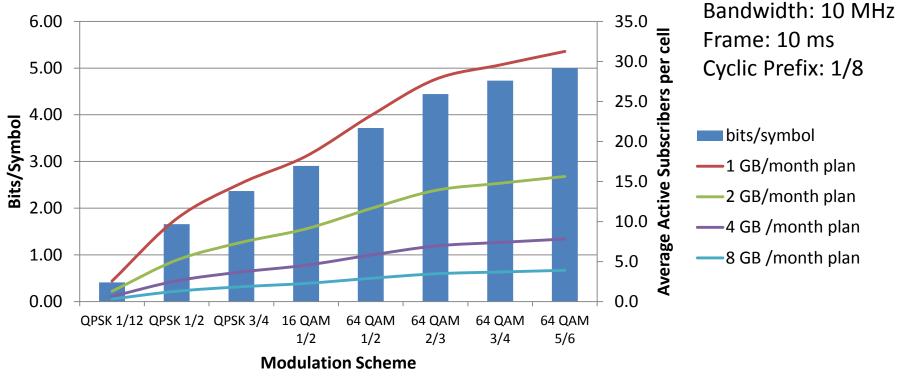
Power Control


• Power Control is foreseen for the uplink, but its relevance is small considering link adaptation



Adaptive Modulation Relative Areas

- Unrestricted cell
- Propagation in free space: 20dB/decade
- Percentages will change if cells are closer to each other and lower modulation schemes are not used
- Cell capacity drops with the increase in cell size
- Larger the cell smaller the capacity



Adaptive Modulation Capacity

- On the bottom are the modulation schemes
- On the right are the average bits per symbol achieved by each modulation scheme (blue bars)
- On the left are the average active users that can be accommodated by each modulation scheme
 - The curves represent monthly user tonnage plan

Capacity per Modulation Scheme Coverage Limit

5/6/2014 © CelPlan International, Inc.

97

Dimensioning and Planning

What are the overheads ?

- Control and Data overheads
 - PDCP, RLC and MAC headers
 - PCFICH and PHICH
 - PDCP IP address compression
 - PHY TB CRC and CB CRC
- DL Frame overheads
 - Reference Signals
 - MBMS
 - Control Area (DCI, ACK/NACK)
 - PHY messages
 - SIB messages
 - RRM messages (CCCH)
- UL Frame overheads
 - Reference Signals
 - Control Area (CSI, ACK/NACK,
 - Random Access
 - RRM messages (CCCH)

- Cell Load
 - Resource interference avoidance
 - Reuse factor
 - Handover
 - Statistical distribution in relation to average

What are the possible bottlenecks?

- Number of available PDCCH limits the number of allocations that can be done in a TTI
- PDSCH area should be enough to allocate data for UE
- PRACH area should be enough for UEs to access it with a minimum amount of conflict
- PUCCH area should be enough for UEs to send CSI and ACK/NACK information
- PUSCH area should be enough to allocate UE data

What has to be dimensioned ?

- Number of DL control symbols (PCFICH)
- PHICH scaling factor (ACK/NACK)
- PRACH iterations capacity
- PUCCH iterations capacity
- Number of users that PDCCH area can handle
- Number of users that PDSCH area can handle
- Number of users that PRACH area can handle
- Number of users that PUCCH area can handle
- Number of users that PUSCH area can handle

What should be planned?

- Link Budget
- Channel (frequency)
- **Cyclic Prefix**
- Physical Layer Cell Identity (PCI)
- Cell and BTS Identity Planning
- Tracking Areas
- PRACH ۲
 - Configuration Index (CI)
 - Preamble format, cell range, load, RF
 - Root Sequence Index (RSI)
 - Unique per cell
 - Zero Correlation Zone (ZCZ)
 - Cell range, RF, RSI size
 - High Speed flag
 - Frequency offset
 - PUCCH allocation
- **Uplink Reference Signal Sequence**

- **Neighbors**
 - LTE
 - UMTS
 - GSM
 - CDMA
 - WiMAX
- Handover
- **Co-siting**
- **Resource Reuse**
 - Cell Planning
 - Segmentation
 - Zoning
 - Fractional Planning
 - Internal/ external
 - ICIC
 - X2 interface

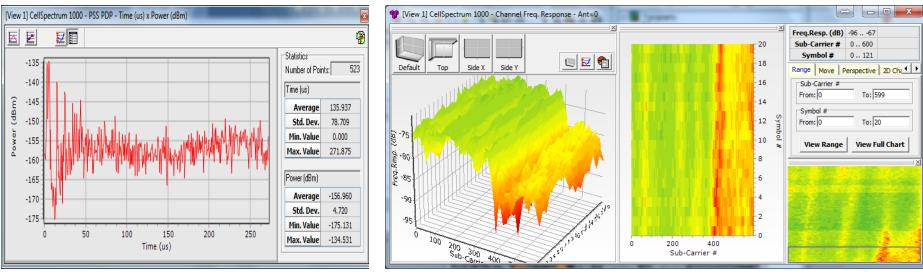
Capacity Calculator

Capacity Calculator

- Interface
 - Aerial
 - GW/Backhaul (layer 4)
 - W/load factor
- Throughput
 - Data Rate or Spectral Efficiency
 - With or without overhead consideration
- MIMO
- UE Information
- DL overhead (RE/Frame)
- UL overhead (RE@PUSCH RBs)
- Resulting Symbol Rate (MSps)

CelPlan New Products

CellSpectrum



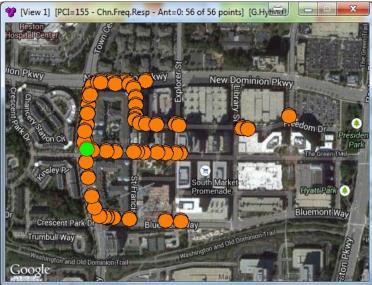
- A unique spectrum scanner for LTE channels
- Presents measurements in 1D (dimension), 2D and 3D at RE (Resource Element) level

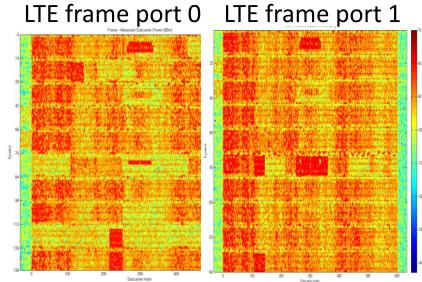
Received Signal level [View 1] CellSpectrum 1000 - TFG Power (dBm) -145 ... -60 0...853 130 🔍 🔛 😤 Default Ton Side Y Range Move Perspective 2D Ch 120 Sub-Carrier # 110 To: 599 From: 0 100 Symbol # 90 To: 140 From: 0 (αBm) -80 View Range **View Full Chart** -90 60 -1նո 50 11r 40 -126 30 -130 20 -140 10 200 400 Sub-Carrier

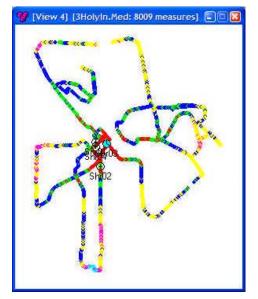
Multipath

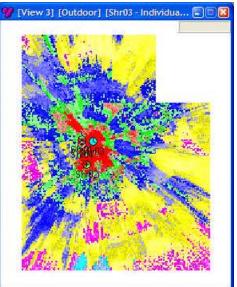
5/6/2014

© CelPlan International, Inc.


110


CellSpectrum


 Provides a unique antenna correlation analysis for MIMO estimation and adjustment

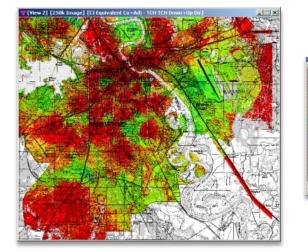

Drive Test

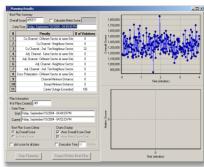
Measurement interpolation

© CelPlan International, Inc.

5/6/2014

A new Generation of Planning Tools A collaborative work with operators Your input is valuable

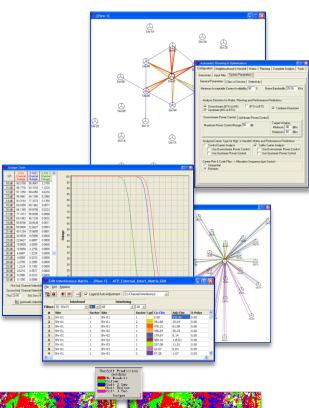



- CellDesigner is the new generation of Planning and Optimization tools
- Wireless networks became so complex that it requires a new generation of tools, capable of:
 - Documenting the physical deployments
 - Documenting network parameters for each technology
 - Flexible data traffic modelling (new services, new UE types)
 - Traffic allocation to different technologies
 - Fractional Resouce Planning
 - Performance evaluation
 - Integrated backhaul

Simultaneous Multi-Technology Support

- Supports all wireless technology standards:
 - LTE-A (TDD and FDD), WiMAX, WI-FI, WCDMA (UMTS), HSPA, HSPA+, IS2000 (1xRTT, EVDO), GSM (including Frequency Hoping), GPRS, EDGE, EDGE-E, CDMA One, PMR/LMR (Tetra and P25), MMDS/LMDS, DVB-T/H, and Wireless Backhaul
- Full network representation
 - Site, Tower, Antenna Housing, Antenna System, Sector, Cell, Radio
 - Full network parameter integration
 - KPI integration
- Full implementation of the Korowajczuk 3D model, capable of performing simultaneously outdoor and indoor multi-floor predictions
- Multi-technology dynamic traffic simulation

Automatic Resource Planning (ARP)


- Enables the dramatic increase of network capacity and performance
- Handover, Frequency and Code Optimization
- Automatically and efficiently optimizes handoff thresholds, neighbor lists, and frequency plans
- Patent-pending methodology capable of significantly increasing cell capacity (SON & ICIC)

Automatic Cell Planning (ACP)

- Footprint and interference enhancement
- Allows optimization of radiated power, antenna type, tilt, azimuth, and height

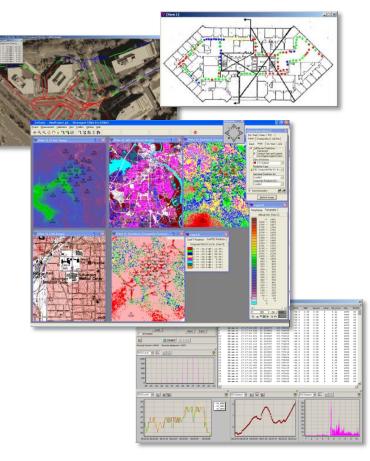
Performance Predictions

 Overall performance prediction per service class (bearer)

Google Earth Integration

 Capable of presenting predictions and measurements live in Google Earth's 3D environment

Network Master Plan (NMP)

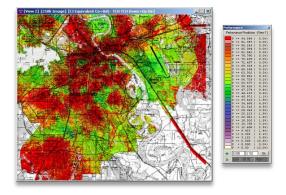

 Patent-pending methodology that simplifies SON and ICIC

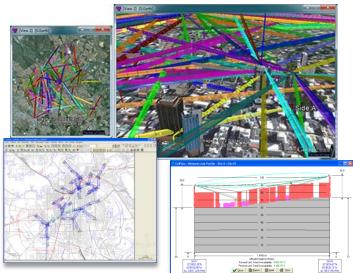
Integration of Field Measurement Data

- Collection of data from virtually any type of measurement equipment and any format
- Automatic extraction of propagation parameters

Integration of KPIs

 Comparison reports between reported and calculated KPIS




GIS Database Editor

 Allows the editing and processing of geographical databases

Backhaul Planning

- Calculates network interconnections, interference analysis & reporting for point-topoint, microwave transmission links
- Can display obstruction in Fresnel zones as well as the path loss
- Calculates attenuation caused by diffraction.
- Calculates rain attenuation for each link
- Provides link performance and compares against the requirements established by ITU-R

Thank You!

Leonhard Korowajczuk webinar@celplan.com

www.celplan.com

Questions?